
Virginia Tech Transportation Institute (VTTI)

- Located near Virginia Tech in Blacksburg,
 Virginia
- Home to the Virginia Smart Road facility
- Virginia Tech's largest research enterprise
- 300 staff members and students
- Nation's 2nd largest Transportation Research Institute
- Approx. \$30M Research funding (FY 2010)

VTTI Capabilities and Resources

- Expertise and experience
 - Driving data acquisition
 - Data storage, handling, analysis
- Facilities
 - Virginia Smart Road
 - The Instrumented City (Blacksburg)
 - Crash simulation Injury Biomechanics
 - National Tire Research Center Virginia International Raceway
 - Truck simulator
 - Vehicle fleet including trucks, buses, vans, pickups, SUVs, cars, motorcycle(s)

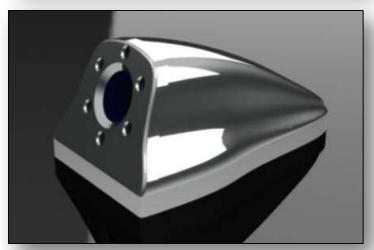
RWM Stakeholder Meeting - Sept. 7, 2011

Data collection system box under passenger's seat

Data collection system box

Front VORAD

Rearward Camera



Face & Forward Cameras

Camera Vision Systems

- Focus Areas
 - Lane change behavior
 - Driver spatial awareness
 - Benefit of IVS technology
- Methods
 - 12 commercial drivers
 - 1 fleet 1terminal
 - 6 instrumented trucks
 - Forward- and side-mounted radar
 - 8 camera views

Drowsy Driver Warning System

Research Objective

Collect data that can be used to evaluate the effectiveness and operational capabilities, limitations, and characteristics of a drowsiness monitor.

AVLS Installation

- Component mounting
 - User interface
 - Main Unit
 - Ancillary
 - Antennas
- Connections routing
 - Power
 - User interface / display
 - Antennas
 - Vehicle network
 - On-board systems

Equipment Installation Considerations

- Connections!, connections!, connections!
- Equipment sharing
 - Leave wiring, antennas, etc.
 - Share more expensive components
- Interference from other equipment
 - Radios
- Beware the parasitic loads
- Antenna placement

Communication Considerations - Data

- Type
 - GPRS
 - SMS
 - 4G LTE
 - Satellite
 - Bluetooth
- Adequate bandwidth
- Data transfer costs
- Automatic signal reacquisition

Communication Considerations - GPS

- Reliability
 - Blocking (trees, buildings, topography)
 - Last known good location
 - Interference (LightSquared)
- Augmentation
 - WAAS
 - DOT efforts
 - Obstacle warning?
- Accuracy notification

Integration with Other On-Board Systems

- Connections
- Signal
- Data format
- Speed
- Resolution
- Matching or adequate data resolution
- "Plug and Play" standards (Clear Roads, e.g.)
- Vehicle network (CAN bus, J1939)

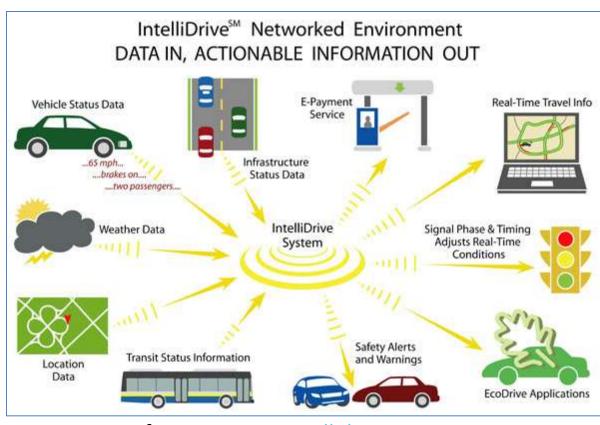
AVLS/Human Interaction – The Good

- Improved safety
 - Location, movement
 - Fatigue prevention
- Record keeping
 - Less paperwork
 - Improved reporting accuracy
- Investment and involvement
- Less concern of damage claims

AVLS/Human Interaction – The Bad

- Distraction Eyes-Off-Road
- Poor software interface issues
- Perception of "Big Brother"
- Poor training and frustration with system
- Dependability and operator's reliance upon it

AVLS/Human Interaction – Recommendations


- Involve the operators up front
- Provide exceptional training
 - Operators
 - Supervisors
- Consider how and when the system will be used
- Good software interface
 - Touchscreen
 - Voice recognition
- Interface mounting and speed lockout
- Consider Eyes-Off-Road

Future Considerations - Connected Vehicle

"A multimodal initiative that aims to enable safe, interoperable networked wireless communications

among vehicles, the infrastructure, and passengers'* personal communications devices."

* And others

Reference: www.intellidriveusa.org

Connected Vehicle Applications

Safety

- Collision warning
- Traffic signal violation warning
- Emergency notification

Mobility

- Adaptive traffic signals
- Intermodal transfers
- Event and emergency planning/response
- Parking location assistance

Environmental

- Eco-routing
- Multi-modal routing
- Adaptive roadway lighting
- Smart intersections

Future Considerations - Connected Vehicle

- Data sources
 - Vehicles as mobile probes
 - 2012 stability control required on passenger vehicles
 - Maintenance vehicles (speed, air temp, fuel usage)
 - Roadside sources (weather, pavement, signals)
 - NCAR weather algorithms
- Integration with MDSS
- Improvement of vehicle location technology

Future - Optimized Winter Maintenance

- Use of Connected Vehicle network and data allows more effective and efficient deployment of pre-treatment, treatment, and plowing operations
- Local weather information from Connected Vehicle network
 - From vehicles:
 - Temperature, barometric pressure, precipitation sensors, head lights
 - Activation of ABS, Stability control, traction control
 - From roadside equipment:
 - Pavement temperatures, humidity, etc.
- From on-board equipment in maintenance vehicles
 - Application rates
 - GPS, Time

